A. PENGERTIAN PIPA ORGANA TERBUKA DAN TERTUTUP
Pipa organa terbuka merupakan sebuah kolom udara atau tabung yang kedua ujung penampangnya terbuka. Kedua ujungnya berfungsi sebagai perut gelombang karena bebas bergerak dan ditengahya ada simpul. Kolom udara dapat beresonansi, artinya dapat bergetar. Kenyataan ini digunakan pada alat musik yang dinamakan Organa, baik organa dengan pipa tertutup maupun pipa terbuka. Dibawah ini adalah gambar penampang pipa organa terbuka.
Jika Udara dihembuskan kuat-kuat melalui lobang A dan diarahkan ke celah C, sehingga menyebabkan bibir B bergetar, maka udara pun bergetar. Gelombang getaran udara merambat ke atas dan oleh lubang sebelah atas gelombang bunyi dipantulkan ke bawah dan bertemu dengan gelombang bunyi yang datang dari bawah berikutnya, sehingga terjadilah interferensi. Maka dalam kolom udara dalam pipa organa timbul pola gelombang longitudinal stasioner. Karena bagian atas pipa terbuka, demikian pula celah C, maka tekanan udara di empat tersebut tentulah sama dan sama dengan tekanan udara luar, jadi tekanan di tempat tersebut timbulah perut.
B. PIPA ORGANA TERTUTUP
Pipa organa tertutup merupakan sebuah kolom udara atau tabung yang salah satu ujung penampangnya tertutup ( menjadi simpul karena tidak bebas bergerak ) dan ujung lainnya terbuka ( menjadi perut ). sehingga gelombang longitudinal stasioner yang terjadi pada bagian ujung tertutup merupakan simpul dan pada bagian ujung terbuka terjadi perut.
Gambar berikut menunjukkan berbagi pola getaran yang terjadi pada pipa organa tertutup.
Pada (a) memberikan nada dasar dengan frekwensi fo. Pada panjang kolom udara L terjadi 1/4 gelombang, karena hanya terdapat 1 simpul dan 1 perut.
TINGGI NADA DAN KUAT BUNYI
Setiap bunyi yang didengar manusia selalu memiliki frekuensi tertentu. Untuk memenuhi frekuensi yang diharapkan, maka munculnya berbagai alat musik, misalnya seruling dan gitar. Saat bermain gitar, maka dawainya akan dipetik untuk mendapatkan frekuensi yang rendah atau tinggi. Tinggi rendahnya frekuensi bunyi yang teratur inilah yang dinamakan tinggi nada. Jadi, dapat disimpulkan bahwa tinggi nada bergantung pada frekuensi sumber bunyi.
Frekuensi tinggi → bunyi bernada tinggiFrekuensi rendah → bunyi bernada rendah
Frekuensi yang dihasilkan oleh suatu sumber bunyi dapat diamati pada layar osiloskop. Bunyi dengan frekuensi rendah menghasilkan bentuk gelombang yang kurang rapat. Bunyi dengan frekuensi tinggi menghasilkan bentuk gelombang yang lebih rapat.
Telinga manusia normal dapat mendengar bunyi yang frekuensinya antara 20 -20.000 Hz. Di luar batas-batas frekuensi bunyi tersebut manusia tidak dapat mendengarnya.
Sumber bunyi dapat diperoleh dari sebuah generator audio. Generator audio dapat menghasilkan bermacam-macam frekuensi dan amplitudo gelombang bunyi. Jika frekuensi dibuat tetap, sedangkan amplitudonya diperbesar, akan didapatkan gelombang bunyi yang lebih kuat. Jika seseorang dekat dengan sumber bunyi, maka orang tersebut akan mendengar bunyi yang lebih kuat dibandingkan dengan orang yang berada lebih jauh dari sumber bunyi tersebut. Namun, keduanya mendengarkan frekuensi yang sama.
Pada umumnya, sumber bunyi tidak bergetar hanya dengan nada dasar saja, tetapi diikuti oleh nada-nada atasnya. Gabungan antara nada-nada dasar dengan nada-nada atas yang mengikutinya akan menghasilkan warna bunyi tertentu yang khas pula bagi suatu alat tertentu. Bunyi yang khas yang dihasilkan oleh sumber bunyi ini disebut warna bunyi. Warna bunyi biola tentunya lain dengan warna bunyi gitar. Demikian juga warna bunyi kedua alat ini akan berbeda pula dengan warna bunyi seruling, walaupun setiap alat musik tersebut memancarkan frekuensi sama. Perbedaan ini muncul karena nada atas yang menyertai nada dasarnya berbeda-beda. Nada dasar dan nada atas yang digabungkan akan menghasilkan nada yang bentuk gelombangnya berbeda dengan nada dasar, tetapi masih memiliki frekuensi tetap.
Pola-pola terjadinya gelombang disebut pola gelombang. Kita akan membahas tinggi nada dan pola gelombang pada dawai dan pipa organa.
Contoh pemanfaatan dawai ini adalah gitar. Pernahkah kalian bermain gitar? Apa yang terjadi saat dawai itu dipetik? Jika ada dawai yang terikat kedua ujungnya, maka saat terpetik dapat terjadi pola-pola gelombang seperti pada Gambar 3.10.
Gambar 3.10. Pola gelombang pada dawai
Kemungkinan pertama terjadi seperti pada Gambar 3.10(a). Pola ini disebut nada dasar (n = 0). Pada gelombang stasionernya terjadi 2 simpul dan 1 perut dan memenuhi l = 1/2λ. Jika dipetik di tengah dawai, maka akan terbentuk pola gelombang seperti Gambar 3.10(b). Ada 3 simpul dan 2 perut. Pola ini dinamakan nada atas pertama (n =1) dan berlaku l = λ. Sedangkan pada Gambar 3.10(c) dinamakan nada atas kedua, l = 3/2λ. Jika pola gelombangnya digambarkan terus, maka setiap kenaikan satu nada akan bertambah ½ gelombang lagi. Sifat dawai ini dapat dituliskan seperti berikut.
Pola gelombang dawai nada ,n = 0, 1, 2, ...
panjang, l = ½ λ, λ, 3/2λ, ....
Bagaimana jika ingin menghitung frekuensi nadanya? Sesuai sifat gelombang, pada bunyi juga berlaku hubungan v = λf. Panjang gelombang λ dapat ditentukan, v dapat ditentukan dari hukum Melde, v = . Dengan demikian, pada nada dasar dapat berlaku:
l=1/2λ; → λ = 2l .........................................(3.18)
Intensitas cahaya
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Intensitas cahaya adalah besaran pokok fisika untuk mengukur daya yang dipancarkan oleh suatu sumber cahaya pada arah tertentu per satuan sudut. Satuan SI dari intensitas cahaya adalah Candela (Cd). Dalam bidang optika dan fotometri (fotografi), kemampuan mata manusia hanya sensitif dan dapat melihat cahaya dengan panjang gelombang tertentu (spektrum cahaya nampak) yang diukur dalam besaran pokok ini.Intensitas cahaya monokromatik pada panjang gelombang λ adalah:
di mana
Iv intensitas cahaya dalam satuan Candela,
I intensitas radian dalam unit W/sr,
fungsi intesitas standar.
Intensitas cahaya total untuk semua panjang gelombang menjadi:
Tidak ada komentar:
Posting Komentar